Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:

Abstract

The proper designing of PV systems requires the use of advanced building energy simulation techniques. It allows to design the best position of the PV array, as well as the right quantity of produced energy in different cases. On the other hand the PV efficiency is not only a constant value but changes according to temperature and solar radiation. This paper is devoted to estimate the simultaneous effect of both weather factors on PV efficiency. The task was achieved by numerical simulation and ESP-r software. Computer simulations have been carried out with the use of the Typical Meteorological Year data for Warsaw (52°N 21°E). The greatest influence of temperature on the efficiency of solar energy conversion was observed for crystalline silicon cells. The influence of the boundary conditions assumed in the study is ignored for amorphous silicon cells in the summer period and regardless of the material type in the winter period.
Go to article

Abstract

By simulating the actual working conditions of a cable, the temperature variation rule of different measuring points under different load currents was analyzed. On this basis, a three-dimensional finite element model (FEM) was established, and the difference and influence factors between the simulation temperature and the experimental measured value were discussed, then the influence of thermal conductivity on the operating temperature of the conductor layer was studied. Finally, combined with the steady-state thermal conductivity model and the experimental measured data, the relation between thermal conductivity and load current was obtained.
Go to article

Abstract

The paper reports on a long-wave infrared (cut-off wavelength ~ 9 μm) HgCdTe detector operating under nbiased condition and room temperature (300 K) for both short response time and high detectivity operation. The ptimal structure in terms of the response time and detectivity versus device architecture was shown. The response time of the long-wave (active layer Cd composition, xCd = 0.19) HgCdTe detector for 300 K was calculated at a level of τs ~ 1 ns for zero bias condition, while the detectivity − at a level of D* ~ 109 cmHz1/2/W assuming immersion. It was presented that parameters of the active layer and P+ barrier layer play a critical role in order to reach τs ≤ 1 ns. An extra series resistance related to the processing (RS+ in a range 5−10 Ω) increased the response time more than two times (τs ~ 2.3 ns).
Go to article

This page uses 'cookies'. Learn more