Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:

Abstract

Specific requirements are designed and implemented in electronic and telecommunication systems for received signals, especially high-frequency ones, to examine and control the signal radiation. However, as a serious drawback, no special requirements are considered for the transmitted signals from a subsystem. Different industries have always been struggling with electromagnetic interferences affecting their electronic and telecommunication systems and imposing significant costs. It is thus necessary to specifically investigate this problem as every device is continuously exposed to interferences. Signal processing allows for the decomposition of a signal to its different components to simulate each component. Radiation control has its specific complexities in systems, requiring necessary measures from the very beginning of the design. This study attempted to determine the highest radiation from a subsystem by estimating the radiation fields. The study goal was to investigate the level of radiations received and transmitted from the adjacent systems, respectively, and present methods for control and eliminate the existing radiations. The proposed approach employs an algorithm which is based on multi-component signals, defect, and the radiation shield used in the subsystem. The algorithm flowchart focuses on the separation and of signal components and electromagnetic interference reduction. In this algorithm, the detection process is carried out at the bounds of each component, after which the separation process is performed in the vicinity of the different bounds. The proposed method works based on the Fourier transform of impulse functions for signal components decomposition that was employed to develop an algorithm for separation of the components of the signals input to the subsystem.
Go to article

Abstract

In this paper, we propose a new method of measuring the target velocity by estimating the scaling parameter of a chaos-generating system. First, we derive the relation between the target velocity and the scaling parameter of the chaos-generating system. Then a new method for scaling parameter estimation of the chaotic system is proposed by exploiting the chaotic synchronization property. Finally, numerical simulations show the effectiveness of the proposed method in target velocity measurement.
Go to article

Abstract

The fixed-point theorem is widely used in different engineering applications. The present paper focuses on its applications in optimisation. A Matlab toolbox, chich implements the branch-and-bound optimisation method based on the fixed-point theorem, is used for solving different real-life test problems, including estimation of model parameters for the Jiles-Atherton model.
Go to article

Abstract

This paper presents a simple DFT-based golden section searching algorithm (DGSSA) for the single tone frequency estimation. Because of truncation and discreteness in signal samples, Fast Fourier Transform (FFT) and Discrete Fourier Transform (DFT) are inevitable to cause the spectrum leakage and fence effect which lead to a low estimation accuracy. This method can improve the estimation accuracy under conditions of a low signal-to-noise ratio (SNR) and a low resolution. This method firstly uses three FFT samples to determine the frequency searching scope, then – besides the frequency – the estimated values of amplitude, phase and dc component are obtained by minimizing the least square (LS) fitting error of three-parameter sine fitting. By setting reasonable stop conditions or the number of iterations, the accurate frequency estimation can be realized. The accuracy of this method, when applied to observed single-tone sinusoid samples corrupted by white Gaussian noise, is investigated by different methods with respect to the unbiased Cramer-Rao Low Bound (CRLB). The simulation results show that the root mean square error (RMSE) of the frequency estimation curve is consistent with the tendency of CRLB as SNR increases, even in the case of a small number of samples. The average RMSE of the frequency estimation is less than 1.5 times the CRLB with SNR = 20 dB and N = 512.
Go to article

Abstract

In this paper, a comparison analysis of three different algorithms for the estimation of sine signal parameters in two-channel common frequency situations is presented. The relevance of this situation is clearly understood in multiple applications where the algorithms have been applied. They include impedance measurements, eddy currents testing, laser anemometry and radio receiver testing for example. The three algorithms belong to different categories because they are based on different approaches. The ellipse fit algorithm is a parametric fit based on the XY plot of the samples of both signals. The seven parameter sine fit algorithm is a least-squares algorithm based on the time domain fitting of a single tone sinewave model to the acquired samples. The spectral sinc fit performs a fitting in the frequency domain of the exact model of an acquired sinewave on the acquired spectrum. Multiple simulation situations and real measurements are included in the comparison to demonstrate the weaknesses and strong points of each algorithm.
Go to article

Abstract

The paper presents a method for estimation of converter drive parameters. This estimation encompassed three types of drives, i.e. a static Scherbius drive, a driver with a brushless direct current (BLDC) motor and a drive with a voltage inverter. For drive modelling and parameter estimation, the author implemented original program mes written in FORTRAN. As well as these, the paper describes an objective function applied for the estimation. The author also compares gradient and gradientless methods, chich are applied for minimization of the objective function. Finally, the author explains the estimation results for example drives, focusing on the coincidence of theoretical and empirical waveforms. The abovementioned procedure led to the general rule, which facilitates estimation efficiency.
Go to article

Abstract

Together with the dynamic development of modern computer systems, the possibilities of applying refined methods of nonparametric estimation to control engineering tasks have grown just as fast. This broad and complex theme is presented in this paper for the case of estimation of density of a random variable distribution. Nonparametric methods allow here the useful characterization of probability distributions without arbitrary assumptions regarding their membership to a fixed class. Following an illustratory description of the fundamental procedures used to this end, results will be generalized and synthetically presented of research on the application of kernel estimators, dominant here, in problems of Bayes parameter estimation with asymmetrical polynomial loss function, as well as for fault detection in dynamical systems as objects of automatic control, in the scope of detection, diagnosis and prognosis of malfunctions. To this aim the basics of data analysis and exploration tasks - recognition of outliers, clustering and classification - solved using uniform mathematical apparatus based on the kernel estimators methodology were also investigated
Go to article

This page uses 'cookies'. Learn more